Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 1, 2026
-
Abstract A nonlinear version of Roth's theorem states that dense sets of integers contain configurations of the form , , . We obtain a multidimensional version of this result, which can be regarded as a first step toward effectivising those cases of the multidimensional polynomial Szemerédi theorem involving polynomials with distinct degrees. In addition, we prove an effective “popular” version of this result, showing that every dense set has some non‐zero such that the number of configurations with difference parameter is almost optimal. Perhaps surprisingly, the quantitative dependence in this result is exponential, compared to the tower‐type bounds encountered in the popular linear Roth theorem.more » « lessFree, publicly-accessible full text available November 1, 2025
-
Abstract We study higher uniformity properties of the Möbius function$$\mu $$, the von Mangoldt function$$\Lambda $$, and the divisor functions$$d_k$$on short intervals$$(X,X+H]$$with$$X^{\theta +\varepsilon } \leq H \leq X^{1-\varepsilon }$$for a fixed constant$$0 \leq \theta < 1$$and any$$\varepsilon>0$$. More precisely, letting$$\Lambda ^\sharp $$and$$d_k^\sharp $$be suitable approximants of$$\Lambda $$and$$d_k$$and$$\mu ^\sharp = 0$$, we show for instance that, for any nilsequence$$F(g(n)\Gamma )$$, we have$$\begin{align*}\sum_{X < n \leq X+H} (f(n)-f^\sharp(n)) F(g(n) \Gamma) \ll H \log^{-A} X \end{align*}$$ when$$\theta = 5/8$$and$$f \in \{\Lambda , \mu , d_k\}$$or$$\theta = 1/3$$and$$f = d_2$$. As a consequence, we show that the short interval Gowers norms$$\|f-f^\sharp \|_{U^s(X,X+H]}$$are also asymptotically small for any fixedsfor these choices of$$f,\theta $$. As applications, we prove an asymptotic formula for the number of solutions to linear equations in primes in short intervals and show that multiple ergodic averages along primes in short intervals converge in$$L^2$$. Our innovations include the use of multiparameter nilsequence equidistribution theorems to control type$$II$$sums and an elementary decomposition of the neighborhood of a hyperbola into arithmetic progressions to control type$$I_2$$sums.more » « less
-
Abstract Singmaster’s conjecture asserts that every natural number greater than one occurs at most a bounded number of times in Pascal’s triangle; that is, for any natural number $$t \geq 2$$, the number of solutions to the equation $$\binom{n}{m} = t$$ for natural numbers $$1 \leq m \lt n$$ is bounded. In this paper we establish this result in the interior region $$\exp(\log^{2/3+\varepsilon} n) \leq m \leq n - \exp(\log^{2/3+\varepsilon} n)$$ for any fixed ɛ > 0. Indeed, when t is sufficiently large depending on ɛ, we show that there are at most four solutions (or at most two in either half of Pascal’s triangle) in this region. We also establish analogous results for the equation $$(n)_m = t$$, where $$(n)_m := n(n-1) \dots (n-m+1)$$ denotes the falling factorial.more » « less
-
null (Ed.)Abstract Let Xk denote the number of k-term arithmetic progressions in a random subset of $$\mathbb{Z}/N\mathbb{Z}$$ or $$\{1, \dots , N\}$$ where every element is included independently with probability p. We determine the asymptotics of $$\log \mathbb{P}\big (X_{k} \ge \big (1+\delta \big ) \mathbb{E} X_{k}\big )$$ (also known as the large deviation rate) where p → 0 with $$p \ge N^{-c_{k}}$$ for some constant ck > 0, which answers a question of Chatterjee and Dembo. The proofs rely on the recent nonlinear large deviation principle of Eldan, which improved on earlier results of Chatterjee and Dembo. Our results complement those of Warnke, who used completely different methods to estimate, for the full range of p, the large deviation rate up to a constant factor.more » « less
-
Abstract Let $$H = N^{\theta }, \theta> 2/3$$ and $$k \geq 1$$. We obtain estimates for the following exponential sum over primes in short intervals: \begin{equation*} \sum_{N < n \leq N+H} \Lambda(n) \mathrm e(g(n)), \end{equation*}where $$g$$ is a polynomial of degree $$k$$. As a consequence of this in the special case $$g(n) = \alpha n^k$$, we deduce a short interval version of the Waring–Goldbach problem.more » « less
An official website of the United States government
